High-intensity focused ultrasound therapy moves closer to the clinic
Researchers are investigating how high-intensity focused ultrasound (HIFU) can work on a cellular level to treat a range of cancers.
List view / Grid view
Researchers are investigating how high-intensity focused ultrasound (HIFU) can work on a cellular level to treat a range of cancers.
Researchers created their new method to analyse chromosomes in 3D, revealing how misconfigurations play a role in cancer.
Having synthesised the curcusone D compound, researchers demonstrated its promise as the first BRAT1 inhibitor, making it a potential cancer therapy.
Research has shown that MAPK4 activates two molecules in cellular signalling pathways involved in prostate cancer growth.
Jim Shanahan from SynDevRx explains why metabo-oncology treatment modalities could be the answer to a rise in metabolic disorders and cancers.
Drs Sam Cooper and Michael Briskin of Phenomic AI, discuss how artificial intelligence (AI) is enabling them to target multi-cellular interactions, such as those in the tumour stroma, for drug development.
By inhibiting the activity of microRNA-194 (miR-194), scientists prevented prostate cancer cells from developing treatment resistance in vitro.
A new cancer-killing virus called CF33 has shown success in pre-clinical trials, helping the immune system to eradicate tumours.
Using CRISPR to cut out fusion genes, scientists were able to specifically induce cancer cell death in murine models of sarcoma and leukaemia.
High-throughput screening is a common method of identifying lead compounds for drug development. The most common targets are enzymes – catalytic proteins that perform chemical reactions in the cell. In this article, Matthew Lloyd discusses the opportunities and challenges associated with this approach.
Researchers have created a new kind of immunotherapy using the interleukin-27 (IL-27) cytokine to effectively combat tumours in vitro and in vivo.
A collaboration of academic institutions in the United States has identified a gene that is linked to alternative splicing changes that occur in several cancers.
Research indicates that activation of the RICTOR/mTORC2 pathway advances cancer metastasis and suggests that inhibiting this signalling may make chemotherapy more effective against colon cancer.
PPP2R2A gene allele deletion in prostate cancers promotes the uncontrolled division of cells, reinstatement of its protein causes cancer cell death, so could provide a new therapeutic option.
Researchers have developed a cell line that allows the mechanisms of prostate cancer bone metastasis to be studied in immunocompetent mice.