Inhibiting PIP4K enzymes could help immune system fight cancer
Researchers identified a potential therapeutic involving the inhibition of PIP4K enzymes which could enable the immune system to destroy tumour cells.
List view / Grid view
Researchers identified a potential therapeutic involving the inhibition of PIP4K enzymes which could enable the immune system to destroy tumour cells.
Researchers have used patient-specific tumour organoid models to improve immunotherapy treatments for appendiceal cancer.
In this article, Dr Lien Lybaert describes how the innate and adaptive immune system work together to produce an effective and durable antitumour response. She explains why the best strategy for personalised cancer therapy is therefore to identify major histocompatibility (MHC) binding epitopes to cover the full antigenic repertoire of…
Immunology study shows that NF-kappa B-inducing kinase (NIK) is critical to T cell metabolism and the antitumour immune response.
New research has provided a metabolic atlas for insights into obesity and tumours' ability to hide from the immune system.
A new cancer-killing virus called CF33 has shown success in pre-clinical trials, helping the immune system to eradicate tumours.
In this article, Dr Bruce Dezube explains why new cancer immunotherapy drugs that utilise the IL-2 pathway with lower side effects could offer more benefits compared to high-dose IL-2 treatment.
By deleting the CISH gene from natural killer cells made from iPSCs, researchers say they have effectively treated leukaemia in vivo and in vitro.
Dr Jing Watnick discusses how lessons learnt from cancer immunotherapy treatments could be applied to the development of COVID-19 therapies.
The oncology market is saturated with new drugs that target the immune system, however, these only target part of the problem caused by cancer’s ability to hide from the immune system. Miguel Ferreira discusses why emerging three-drug combinations are poised to redefine the immuno-oncology treatment paradigm in advanced malignancies with…
Neoantigens have gained much interest in recent years, mainly due to their ability to elicit a strong, specific immune response. Nikki Withers spoke to two immunology experts to explore the progress being made and assess what remains challenging for cancer investigators working on these transformational therapies.
This in-depth focus features articles on using combinations of immuno-oncology drugs to target solid tumours and haematological cancers and how neoantigens of cancer cells could be used as the basis of novel immuno-oncology vaccines.
In this issue authors discuss the development of COVID-19 antibody therapies, how high-throughput screening enhances research at the Crick Institute and why combinations of immuno-oncology drugs could revolutionise treatment of advanced cancers. Also included in the issue are articles on stem cells and imaging.
Chimeric antigen receptor (CAR) T-cell therapies have produced encouraging clinical outcomes, demonstrating their therapeutic potential in mitigating tumour development. However, another form of T-cell immunotherapy based on T-cell receptors (TCR) has also shown great potential in this field. Here, Nikki Withers speaks to Miguel Forte who elaborates on the process…
Researchers have shown that natural killer (NK) cells work best as an immunotherapy when in an early stage of development, so could be manufactured from pluripotent stem cells.